Logo del repository
  1. Home
 
Opzioni

Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3-CA1 connections in the hippocampus

Mohajerani, M.
•
Sivakumaran, S.
•
Zacchi, P.
altro
Cherubini, E.
2007
  • journal article

Periodico
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Abstract
At early developmental stages, correlated neuronal activity is thought to exert a critical control on functional and structural refinement of synaptic connections. In the hippocampus, between postnatal day 2 (P2) and P6, network-driven giant depolarizing potentials (GDPs) are generated by the synergistic action of glutamate and GABA, which is depolarizing and excitatory. Here the rising phase of GDPs was used to trigger Schaffer collateral stimulation in such a way that synchronized network activity was coincident with presynaptic activation of afferent input. This procedure produced a persistent increase in spontaneous and evoked α-amino-3-hydroxy-5-methyl-4-isoxadepropionic acid-mediated glutamatergic currents, an effect that required calcium influx through postsynaptic L-type calcium channels. No potentiation was observed when a delay of 3 sec was introduced between GDPs and afferent stimulation. Pairing-induced potentiation was prevented by scavengers of endogenous BDNF or tropomyosin-related kinase receptor B (TrkB) receptor antagonists. Blocking TrkB receptors in the postsynaptic cell did not prevent the effects of pairing, suggesting that BDNF, possibly secreted from the postsynaptic cell during GDPs, acts on TrkB receptors localized on presynaptic neurons. Application of exogenous BDNF mimicked the effects of pairing on synaptic transmission. In addition, pairing-induced synaptic potentiation was blocked by ERK inhibitors, suggesting that BDNF activates the MAPK/ERK cascade, which may lead to transcriptional regulation and new protein synthesis in the postsynaptic neuron. These results support the hypothesis that, during a critical period of postnatal development, GABAA-mediated GDPs are instrumental in tuning excitatory synaptic connections and provide insights into the molecular mechanisms involved in this process.
DOI
10.1073/pnas.0704533104
WOS
WOS:000248650300040
Archivio
http://hdl.handle.net/20.500.11767/29964
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-34548737560
Diritti
metadata only access
Scopus© citazioni
78
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
78
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback