Home
Esportazione
Statistica
Opzioni
Visualizza tutti i metadati (visione tecnica)
Mathematical and numerical modeling of liquid crystal elastomer phase transition and deformation
DE LUCA M.
•
De Simone, Antonio
2012
journal article
Periodico
MATERIALS RESEARCH SOCIETY SYMPOSIA PROCEEDINGS
Abstract
Liquid crystal (in particular, nematic) elastomers consist of cross-linked flexible polymer chains with embedded stiff rod molecules that allow them to behave as a rubber and a liquid crystal. Nematic elastomers are characterized by a phase transition from isotropic to nematic past a temperature threshold. They behave as rubber at high temperature and show nematic behavior below the temperature threshold. Such transition is reversible. While in the nematic phase, the rod molecules are aligned along the direction of the ''nematic director''. This molecular rearrangement induces a stretch in the polymer chains and hence macroscopic spontaneous deformations. The coupling between nematic order parameter and deformation gives rise to interesting phenomena with a potential for new interesting applications. In the biological field, the ability to considerably change their length makes them very promising as artificial muscles actuators. Their tunable optical properties make them suitable, for example, as lenses for new imaging systems. We present a mathematical model able to describe the behavior of nematic elastomers and numerical simulations reproducing such peculiar behavior. We use a geometrically linear version of the Warner and Terentjev model [1] and consider cooling experiments and stretching experiments in the direction perpendicular to the one of the director at cross-linking. © 2012 Materials Research Society.
DOI
10.1557/opl.2012.249
WOS
WOS:000309561200019
Archivio
http://hdl.handle.net/20.500.11767/12271
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84865003064
Diritti
metadata only access
Soggetti
Settore ICAR/08 - Sci...
Web of Science© citazioni
1
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Vedi dettagli