Logo del repository
  1. Home
 
Opzioni

A STATISTICALLY PROVEN AUTOMATIC BASED CLASSIFICATION PROCEDURE OF LASER POINTS

CROSILLA, Fabio
•
VISINTINI, Domenico
•
SEPIC F.
2008
  • journal article

Periodico
THE INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES
Abstract
One of the critical aspects of the curvature based classification of spatial objects from laser point clouds is the correct interpretation of the results. This is due to the fact that measurements are characterized by errors and that simplified analytical models are applied to estimate the differential terms used to compute the object surface curvature values. In particular, the differential terms are the first and second order partial derivatives of a Taylor’s expansion used to determine, by the so-called “Weingarten map” matrix, the Gaussian and the mean curvatures. Due to the measurement errors and to the simplified model adopted, a statistical procedure is proposed in this paper. It is based at first on the analysis of variance (ANOVA) carried out to verify the fulfilment of the second order Taylor’s expansion applied to locally compute the curvature differential terms. Successively, the variance covariance propagation law is applied to the estimated differential terms in order to calculate the variance covariance matrix of a two rows vector containing the Gaussian and the mean curvature estimates. An F ratio test is then applied to verify the significance of the Gaussian and of the mean curvature values. By analysing the test acceptance or rejection for K and H, and their sign, a reliable classification of the whole point cloud into its geometrical basic types is carried out. Some numerical experiments on synthetic and real laser data finally emphasize the capabilities of the method proposed.
Archivio
http://hdl.handle.net/11390/693347
Diritti
closed access
Soggetti
  • Laser scanning

  • Classification

  • Feature Recognition

Visualizzazioni
6
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback