Logo del repository
  1. Home
 
Opzioni

A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications

Chudziak, Tomasz
•
Montes-García, Verónica
•
Czepa, WÅ odzimierz
altro
Ciesielski, Artur
2023
  • journal article

Periodico
NANOSCALE
Abstract
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp(2) conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m(-1)) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g(-1), and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.
DOI
10.1039/d3nr04521h
WOS
WOS:001089029800001
Archivio
https://hdl.handle.net/11368/3069368
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85175636549
https://pubs.rsc.org/en/content/articlelanding/2023/nr/d3nr04521h
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc/4.0/
license uri:http://creativecommons.org/licenses/by-nc/4.0/
FVG url
https://arts.units.it/bitstream/11368/3069368/1/Chudziak et al 2023.pdf
Soggetti
  • Graphene oxide

  • chemical reduction

  • skin toxicity

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback