Logo del repository
  1. Home
 
Opzioni

Nano-scaled particles and fibres occupational exposure assessment: An integrated approach from air sampling to skin and surface contamination

Prodi A.
•
Larese Filon F.
2016
  • journal article

Periodico
NANO BIOMEDICINE AND ENGINEERING
Abstract
Workers may be exposed to nanoparticles (NPs) by inhalation, cutaneous contact and gastroenteric pathways, but today there is no standardized method for either assessing or monitoring the occupational exposure. Moreover, there is no all-in-one assessment strategy, so it is preferable to consider different perspectives. Every assessment should be preceded by a preliminary analysis of the workplace in order to gather useful data on the potential exposure sources, which will help in outlining the assessment strategy. The purpose of air monitoring should be to characterize NP emissions and assess, as a minimum, the mass, particle number concentration, granulometric distribution, specific surface and chemical composition. There are several techniques which may assess these characteristics: the most used in real occupational contexts are mobility particle sizers, particle counters (optical, condensation, etc.), surface area monitors, while personal samplers are promising tools which still have been used almost only in research or controlled contexts. Skin and surfaces may be sampled according to the nature of substances and the circumstances of exposure. Sampling methods can be divided in three main categories: interception (e.g. carbon tabs), removal (e.g. adhesive tape stripping, wiping), in situ methods (e.g. UV fluorescence). Chemical analysis methods (e.g. spectroscopy) and electron microscopy techniques may enhance available data. Considering the available information, we suggest a stepwise approach for risk assessment composed of three steps, starting from a quick and relatively cheap screening method to assess exposure, followed by 2 gradually more accurate but costly approaches to perform whether a significant exposure is detected.
DOI
10.5101/nbe.v8i2.p91-104
Archivio
http://hdl.handle.net/11368/2964264
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84994378275
http://nanobe.org/Data/View/370?type=100
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2964264/2/8(2)_p91-104.pdf
Soggetti
  • Air sampling

  • Contamination

  • Nanomaterial

  • Nanoparticle

  • Occupational health

  • Risk assessment

  • Skin

  • Surface

  • Workplace

Scopus© citazioni
5
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback