Logo del repository
  1. Home
 
Opzioni

Observation of Rabi dynamics with a short-wavelength free-electron laser

Nandi, Saikat
•
Olofsson, Edvin
•
Bertolino, Mattias
altro
Dahlström, Jan Marcus
2022
  • journal article

Periodico
NATURE
Abstract
Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field(1). They are ubiquitous in physics with applications in different areas such as photonics(2), nano-electronics(3), electron microscopy(4) and quantum information(5). While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation(6). Although intense nanometre-wavelength light sources have been available for more than a decade(7-9), Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser(10) can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler-Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom-field interactions(11). Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond(12) and few-femtosecond(13) extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.
DOI
10.1038/s41586-022-04948-y
WOS
WOS:000842264100015
Archivio
https://hdl.handle.net/11368/3030540
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135995763
https://www.nature.com/articles/s41586-022-04948-y
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3030540/1/s41586-022-04948-y.pdf
Soggetti
  • Rabi oscillations

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback