Logo del repository
  1. Home
 
Opzioni

Stability for the Calderón's problem for a class of anisotropic conductivities via an ad-hoc misfit functional

Sonia Foschiatti
•
Romina Gaburro
•
Eva Sincich
2021
  • journal article

Periodico
INVERSE PROBLEMS
Abstract
We address the stability issue in Calder'on's problem for a special class of anisotropic conductivities of the form $sigma=gamma A$ in a Lipschitz domain $Omegasubsetmathbb{R}^n$, $ngeq 3$, where $A$ is a known Lipschitz continuous matrix-valued function and $gamma$ is the unknown piecewise affine scalar function on a given partition of $Omega$. We define an ad-hoc misfit functional encoding our data and establish stability estimates for this class of anisotropic conductivity in terms of both the misfit functional and the more commonly used local Dirichlet-to-Neumann map.
DOI
10.1088/1361-6420/ac349c
WOS
WOS:000722172200001
Archivio
http://hdl.handle.net/11368/2995890
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85119943942
https://iopscience.iop.org/article/10.1088/1361-6420/ac349c
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2995890/8/Foschiatti_2021_Inverse_Problems_37_125007.pdf
Soggetti
  • Calderón’s problem

  • anisotropic conductiv...

  • stability

  • misfit functional

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback