Logo del repository
  1. Home
 
Opzioni

Curved noncommutative torus and Gauss--Bonnet

Dabrowski, Ludwik
•
Sitarz A.
2013
  • journal article

Periodico
JOURNAL OF MATHEMATICAL PHYSICS
Abstract
We study perturbations of the flat geometry of the noncommutative two-dimensional torus T2θ (with irrational θ). They are described by spectral triples (Aθ,H,D) , with the Dirac operator D, which is a differential operator with coefficients in the commutant of the (smooth) algebra A θ of Tθ . We show, up to the second order in perturbation, that the ζ-function at 0 vanishes and so the Gauss-Bonnet theorem holds. We also calculate first two terms of the perturbative expansion of the corresponding local scalar curvature.
DOI
10.1063/1.4776202
WOS
WOS:000314726700047
Archivio
http://hdl.handle.net/20.500.11767/11448
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84873443018
Diritti
closed access
Soggetti
  • Dirac operator, nonco...

Scopus© citazioni
28
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
30
Data di acquisizione
Mar 25, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback