Logo del repository
  1. Home
 
Opzioni

Quasi-periodic solutions with Sobolev regularity of NLS on T^d with a multiplicative potential

Berti, Massimiliano
•
Bolle P.
2013
  • journal article

Periodico
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
Abstract
We prove the existence of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on the d-dimensional torus T^d, d ≥ 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are infinitely many times differentiable so are the solutions. The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators (“Green functions”) along scales of Sobolev spaces. The key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the measure and “complexity” estimates.
DOI
10.4171/JEMS/361
WOS
WOS:000314961500008
Archivio
http://hdl.handle.net/20.500.11767/11920
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84870670035
https://hal.archives-ouvertes.fr/hal-00621262/document
https://arxiv.org/abs/1012.1427
Diritti
closed access
Soggetti
  • Nonlinear Schrodinger...

  • quasi-periodic soluti...

  • Nash-Moser theory

  • infinite dimensional ...

  • Settore MAT/05 - Anal...

Web of Science© citazioni
91
Data di acquisizione
Jan 14, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback