Logo del repository
  1. Home
 
Opzioni

Planck early results. XXV. Thermal dust in nearby molecular clouds

Abergel, A.
•
Ade, P. A. R.
•
Aghanim, N.
altro
Perrotta, Francesca
2011
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 -> 1 and J = 1 -> 0 (CO)-C-12 and (CO)-C-13 emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 mu m tau(250). The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 mu m per hydrogen atom tau(250)/N-H. We report an increase of tau(250)/N-H by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
DOI
10.1051/0004-6361/201116483
WOS
WOS:000298485100026
Archivio
http://hdl.handle.net/20.500.11767/14320
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-82955201710
Diritti
open access
Soggetti
  • dust, extinction

  • ISM: structure

  • evolution

  • infrared: ISM

  • ISM: individual objec...

  • Settore FIS/05 - Astr...

Scopus© citazioni
79
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
162
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback