Logo del repository
  1. Home
 
Opzioni

Dietary Patterns and Cancer Risk: An Overview with Focus on Methods

Edefonti, Valeria
•
De Vito, Roberta
•
Parpinel, Maria
•
Ferraroni, Monica
2023
  • journal article

Periodico
THE NEW ENGLAND JOURNAL OF STATISTICS IN DATA SCIENCE
Abstract
Traditionally, research in nutritional epidemiology has focused on specific foods/food groups or single nutrients in their relation with disease outcomes, including cancer. Dietary pattern analysis have been introduced to examine potential cumulative and interactive effects of individual dietary components of the overall diet, in which foods are consumed in combination. Dietary patterns can be identified by using evidence-based investigator-defined approaches or by using datadriven approaches, which rely on either response independent (also named “a posteriori” dietary patterns) or response dependent (also named “mixed-type” dietary patterns) multivariate statistical methods. Within the open methodological challenges related to study design, dietary assessment, identification of dietary patterns, confounding phenomena, and cancer risk assessment, the current paper provides an updated landscape review of novel methodological developments in the statistical analysis of a posteriori/mixed-type dietary patterns and cancer risk. The review starts from standard a posteriori dietary patterns from principal component, factor, and cluster analyses, including mixture models, and examines mixed-type dietary patterns from reduced rank regression, partial least squares, classification and regression tree analysis, and least absolute shrinkage and selection operator. Novel statistical approaches reviewed include Bayesian factor analysis with modeling of sparsity through shrinkage and sparse priors and frequentist focused principal component analysis. Most novelties relate to the reproducibility of dietary patterns across studies where potentialities of the Bayesian approach to factor and cluster analysis work at best
DOI
10.51387/23-NEJSDS35
Archivio
https://hdl.handle.net/11390/1264924
https://ricerca.unityfvg.it/handle/11390/1264924
Diritti
metadata only access
Soggetti
  • Dietary patterns, Clu...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback