Logo del repository
  1. Home
 
Opzioni

Quasilinear elliptic equations with critical potentials

Dâ Ambrosio, Lorenzo
•
MITIDIERI, ENZO
2017
  • journal article

Periodico
ADVANCES IN NONLINEAR ANALYSIS
Abstract
We study Liouville theorems for problems of the form divL(A (x, u, ∇Lu)) + V(x)|u|p−2u = a(x)|u|q−1u on RN in the framework of Carnot groups. Here A is a vector-valued function satisfying Carathéodory condition and ∇L denotes an horizontal gradient, V is a given singular potential, a is a measurable scalar function and q > p − 1. Particular emphasis is given to the case when V is a Hardy or Gagliardo–Nirenberg potential. The results are new even in the canonical Euclidean setting.
DOI
10.1515/anona-2017-0091
WOS
WOS:000399905400004
Archivio
http://hdl.handle.net/11368/2901628
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85018399550
https://www.degruyter.com/document/doi/10.1515/anona-2017-0091/html
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/2901628/1/[Advances in Nonlinear Analysis] Quasilinear elliptic equations with critical potentials.pdf
Soggetti
  • Quasilinear elliptic ...

  • Liouville theorem

  • Carnot groups

Scopus© citazioni
17
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
17
Data di acquisizione
Mar 22, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback