Logo del repository
  1. Home
 
Opzioni

Branches of positive solutions of a superlinear indefinite problem driven by the one-dimensional curvature operator

Lopez-Gomez J.
•
Omari P.
2022
  • journal article

Periodico
APPLIED MATHEMATICS LETTERS
Abstract
This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions (λ,u) of the quasilinear Neumann problem −(u′/1+(u′)2)′=λa(x)f(u),0<1,u′(0)=u′(1)=0,bifurcating from u=0 as λ→+∞. Here, (u′/1+(u′)2)′ is the one-dimensional curvature operator, λ∈R is a parameter, the weight a changes sign, and the function f is superlinear at 0. A novel approach is introduced based on the explicit construction of non-ordered sub and supersolutions.
DOI
10.1016/j.aml.2021.107807
WOS
WOS:000728531000001
Archivio
http://hdl.handle.net/11368/3005111
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85120425100
https://www.sciencedirect.com/science/article/pii/S0893965921004353
Diritti
open access
license:digital rights management non definito
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3005111
Soggetti
  • Connected set of solu...

  • Curvature operator

  • Indefinite weight

  • Neumann boundary cond...

  • Positive solution

  • Sub and supersolution...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback