Logo del repository
  1. Home
 
Opzioni

2-d stability of the Neel wall

DeSimone A.
•
Knupfer H.
•
Otto F.
2006
  • journal article

Periodico
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Abstract
We are interested in thin-film samples in micromagnetism, where the magnetization m is a 2-d unit-length vector field. More precisely we are interested in transition layers which connect two opposite magnetizations, so called Néel walls. We prove stability of the 1-d transition layer under 2-d perturbations. This amounts to the investigation of the following singularly perturbed energy functional: E2d(m)= ε ∫ |∇m| 2dx + 1/2 ∫ |∇-1/2∇̇m|2dx. The topological structure of this two-dimensional problem allows us to use a duality argument to infer the optimal lower bound. The lower bound relies on an ε-perturbation of the following logarithmically failing interpolation inequality ∫ |∇1/2/φ|2dx ¬ sup|φ| ∫ |∇φ|dx.
DOI
10.1007/s00526-006-0019-z
WOS
WOS:000239148400005
Archivio
http://hdl.handle.net/20.500.11767/16233
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33746242433
Diritti
closed access
Soggetti
  • Micromagnetic

  • Néel wall

  • Thin film

Web of Science© citazioni
32
Data di acquisizione
Mar 23, 2024
Visualizzazioni
6
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback