Logo del repository
  1. Home
 
Opzioni

Heavy metals in sediments and halophytes of saltmarshes in the Marano and Grado Lagoon (Northern Adriatic Sea).

EMILI, ANDREA
•
PETRANICH, ELISA
•
COVELLI, STEFANO
•
ACQUAVITA, Alessandro
2013
  • conference object

Abstract
The content of several heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn) was determined in sediments and in plants (the halophytes Sarcocornia fruticosa and Limonium vulgare) from two selected saltmarshes located in the Marano and Grado Lagoon (Northern Adriatic Sea). This environment has been affected by severe Hg contamination from both industrial and long-term mining activities. In both saltmarshes, Hg content in sediments exceeded the estimated background value (0.13 μg g-1), showing the highest concentrations (13.7 μg g-1) in the eastern sector (Grado Lagoon), the most affected by cinnabar ore extraction. On the other hand, the saltmarsh, located in the Marano Lagoon, showed a higher degree of contamination for As, Cd and Pb, which can be related to industrial sources. The rhizo-sediments of both halophytes reflected the characteristics of the non-vegetated sediment, with higher organic carbon content and similar metal concentrations. Enrichment Factors (EF=[metal]root/[metal]rhizo-sediment) for each sediment layer were calculated for both halophytes, showing metal enrichments in the roots and the presence of preferential layers of metal accumulation. Hg showed accumulation (EF>1) in the roots below the 20 cm depth, with higher contents in S. Fruticosa. As and Cd were accumulated by both halophytes, more efficiently by S. Fruticosa, and the same species showed also accumulation of Pb and Zn. Translocation of metals from the roots to the aboveground biomass was investigated by measuring metal contents in shoots and leaves of the two species. With the exception of Cd and Hg, all metals were present in the aboveground biomass, most evidently for Cr in S. Fruticosa and Zn in L. Vulgare, although the presence of the latter in leaves could be due to plant physiology rather than translocation of the contaminant.
DOI
10.1051/e3sconf/2013016006
WOS
WOS:000326475400047
Archivio
http://hdl.handle.net/11368/2768334
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85016481201
Diritti
metadata only access
Soggetti
  • Saltmarshe

  • heavy metal

  • halophyte

  • bioaccumulation

  • enrichment factor

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback