Logo del repository
  1. Home
 
Opzioni

Symmetry resolved entanglement in two-dimensional systems via dimensional reduction

Murciano, S.
•
Ruggiero, P.
•
Calabrese, P.
2020
  • journal article

Periodico
JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT
Abstract
We report on the calculation of the symmetry resolved entanglement entropies in two-dimensional many-body systems of free bosons and fermions by dimensional reduction. When the subsystem is translational invariant in a transverse direction, this strategy allows us to reduce the initial two-dimensional problem into decoupled one-dimensional ones in a mixed space-momentum representation. While the idea straightforwardly applies to any dimension d, here we focus on the case d = 2 and derive explicit expressions for two lattice models possessing a U(1) symmetry, i.e., free non-relativistic massless fermions and free complex (massive and massless) bosons. Although our focus is on symmetry resolved entropies, some results for the total entanglement are also new. Our derivation gives a transparent understanding of the well known different behaviours between massless bosons and fermions in d 2: massless fermions presents logarithmic violation of the area which instead strictly hold for bosons, even massless. This is true both for the total and the symmetry resolved entropies. Interestingly, we find that the equipartition of entanglement into different symmetry sectors holds also in two dimensions at leading order in subsystem size; we identify for both systems the first term breaking it. All our findings are quantitatively tested against exact numerical calculations in lattice models for both bosons and fermions.
DOI
10.1088/1742-5468/aba1e5
WOS
WOS:000559781300001
Archivio
http://hdl.handle.net/20.500.11767/117233
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85089580087
https://arxiv.org/abs/2003.11453
Diritti
metadata only access
Soggetti
  • Settore FIS/02 - Fisi...

Web of Science© citazioni
54
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback