Logo del repository
  1. Home
 
Opzioni

A compactness result in the gradient theory of phase transitions

DeSimone A.
•
Muller S.
•
Kohn R. V.
•
Otto F.
2001
  • journal article

Periodico
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS
Abstract
We examine the singularly perturbed variational problem E ε(ψ) = ∫ ε -1(1 - |∇ψ| 2) 2 + ε|∇∇ψ| 2 in the plane. As ε → 0, this functional favours |∇ψ| = 1 and penalizes singularities where |∇∇ψ| concentrates. Our main result is a compactness theorem: if {E ε(ψ ε)} ε↓0 is uniformly bounded, then {∇ψ ε} ε↓0 is compact in L 2. Thus, in the limit ε → 0, ψ solves the eikonal equation |∇ψ| = 1 almost everywhere. Our analysis uses 'entropy relations' and the 'div-curl lemma,' adopting Tartar's approach to the interaction of linear differential equations and nonlinear algebraic relations.
DOI
10.1017/S030821050000113X
WOS
WOS:000171436100006
Archivio
http://hdl.handle.net/20.500.11767/13220
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33748381840
Diritti
metadata only access
Scopus© citazioni
69
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
76
Data di acquisizione
Mar 27, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback