Logo del repository
  1. Home
 
Opzioni

Characterization of an in vitro model to study the possible role of polyomavirus BK in prostate cancer.

Villani S
•
Gagliano N
•
Procacci P
altro
Delbue S
2019
  • journal article

Periodico
JOURNAL OF CELLULAR PHYSIOLOGY
Abstract
Prostate cancer (PCa) is the most common male neoplasms in the Western world. Various risk factors may lead to carcinogenesis, including infectious agents such as polyomavirus BK (BKPyV), which infects the human renourinary tract, establishes latency, and encodes oncoproteins. Previous studies suggested that BKPyV plays a role in PCa pathogenesis. However, the unspecific tropism of BKPyV and the lack of in vitro models of BKPyV-infected prostate cells cast doubt on this hypothesis. The aim of the present study was to determine whether BKPyV could (a) infect normal and/or tumoral epithelial prostate cells and (b) affect their phenotype. Normal epithelial prostate RWPE-1 cells and PCa PC-3 cells were infected with BKPyV for 21 days. Cell proliferation, cytokine production, adhesion, invasion ability, and epithelial-to-mesenchymal transition (EMT) markers were analyzed. Our results show that (a) RWPE-1 and PC-3 cells are both infectable with BKPyV, but the outcome of the infection varies, (b) cell proliferation and TNF-α production were increased in BKPyV-infected RWPE-1, but not in PC-3 cells, (c) adhesion to matrigel and invasion abilities were elevated in BKPyV-infected RWPE-1 cells, and (d) loss of E-cadherin and expression of vimentin occurred in both uninfected and infected RWPE-1 cells. In conclusion, BKPyV may change some features of the normal prostate cells but is not needed for maintaining the transformed phenotype in the PCa cells The fact that RWPE-1 cells exhibit some phenotype modifications related to EMT represents a limit of this in vitro model.
DOI
10.1002/jcp.27871
WOS
WOS:000462645700183
Archivio
http://hdl.handle.net/11368/2947181
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057724066
https://onlinelibrary.wiley.com/doi/full/10.1002/jcp.27871
Diritti
closed access
FVG url
https://arts.units.it/request-item?handle=11368/2947181
Soggetti
  • cytokine production

  • in vitro model

  • polyomaviru

  • prostate Cancer (PCa)...

Web of Science© citazioni
7
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback