Logo del repository
  1. Home
 
Opzioni

In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells

Marianna Maddaloni
•
Rossella Farra
•
Barbara Dapas
altro
Gabriele Grassi
2024
  • journal article

Periodico
PHARMACEUTICS
Abstract
Background: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome- dependent degradation of proteins. Methods: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. Results: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. Conclusion: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.
DOI
10.3390/pharmaceutics16050664
WOS
WOS:001231524700001
Archivio
https://hdl.handle.net/11368/3074838
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85194239908
https://www.mdpi.com/1999-4923/16/5/664
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3074838/1/pharmaceutics-16-00664.pdf
Soggetti
  • ovarian cancer

  • 2C

  • apoptosi

  • E2F1

  • in silico docking

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback