Logo del repository
  1. Home
 
Opzioni

Analog gravity from field theory normal modes?

CARLOS BARCELO
•
MATT VISSER
•
Liberati, Stefano
2001
  • journal article

Periodico
CLASSICAL AND QUANTUM GRAVITY
Abstract
We demonstrate that the emergence of a curved spacetime `effective Lorentzian geometry' is a common and generic result of linearizing a classical scalar field theory around some non-trivial background configuration. This investigation is motivated by considering the large number of `analogue models' of general relativity that have recently been developed based on condensed matter physics, and asking whether there is something more fundamental going on. Indeed, linearization of a classical field theory (that is, a field-theoretic `normal-mode analysis') results in fluctuations whose propagation is governed by a Lorentzian-signature curved spacetime `effective metric'. In the simple situation considered in this paper (a single classical scalar field), this procedure results in a unique effective metric, which is quite sufficient for simulating kinematic aspects of general relativity (up to and including Hawking radiation). Upon quantizing the linearized fluctuations around this background geometry, the one-loop effective action is guaranteed to contain a term proportional to the Einstein-Hilbert action of general relativity, suggesting that while classical physics is responsible for generating an `effective geometry', quantum physics can be argued to induce an `effective dynamics'. The situation is strongly reminiscent of, though not identical to, Sakharov's `induced-gravity' scenario, and suggests that Einstein gravity is an emergent low-energy long-distance phenomenon that is insensitive to the details of the high-energy short-distance physics. (We mean this in the same sense that hydrodynamics is a long-distance emergent phenomenon, many of whose predictions are insensitive to the short-distance cut-off implicit in molecular dynamics.)
DOI
10.1088/0264-9381/18/17/313
WOS
WOS:000172022100016
Archivio
http://hdl.handle.net/20.500.11767/16600
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0035620892
Diritti
closed access
Scopus© citazioni
85
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
83
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback