Logo del repository
  1. Home
 
Opzioni

On symmetric bi-derivations in rings

Ashraf, Mohammad
1999
  • Controlled Vocabulary...

Abstract
Let R be a ring with centre Z(R). A bi-additive symmetric mapping D$\left(\cdot,\cdot\right)$ : $R\times R\longrightarrow R$ is called symmetric bi-derivation if for any fìxed $y\,\epsilon\, R,\, x\mapsto D\left(x,y\right)$is a derivation. The main result of the present paper states that if R is a semiprime ring of characteristic different from two and three which admits a symmetric bi-derivation D such that $\left[\left[D\left(x,x\right)x\right],x\right]\epsilon Z\left(R\right)$ holds for all $y\,\epsilon\, R$, then $\left[D\left(x,x\right)x\right]$=0, for all $y\,\epsilon\, R$. Further, some commutativity results are also obtained.
Archivio
http://hdl.handle.net/10077/4319
Diritti
open access
Soggetti
  • semiprime ring

  • derivation

  • commutator

  • centre

Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback