Logo del repository
  1. Home
 
Opzioni

Tangent Lines and Lipschitz Differentiability Spaces

Cavalletti, Fabio
•
Rajala, T.
2016
  • journal article

Periodico
ANALYSIS AND GEOMETRY IN METRIC SPACES
Abstract
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space. © 2016 Fabio Cavalletti and Tapio Rajala.
DOI
10.1515/agms-2016-0004
WOS
WOS:000376541200004
Archivio
http://hdl.handle.net/20.500.11767/44691
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84985945881
http://dx.medra.org/10.1515/agms-2016-0004
https://arxiv.org/abs/1503.01020
Diritti
open access
Soggetti
  • Lipschitz differentia...

  • metric geometry

  • Ricci curvature

  • tangent of metric spa...

  • Settore MAT/05 - Anal...

Scopus© citazioni
1
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
2
Data di acquisizione
Mar 17, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback