Logo del repository
  1. Home
 
Opzioni

On generalisation of H-measures

Erceg, Marko
•
IVEC I.
2017
  • journal article

Periodico
FILOMAT
Abstract
In some applications it is useful to consider variants of H-measures different from those introduced in the classical or the parabolic case. We introduce the notion of admissible manifold and define variant H-measures on R^d×P for any admissible manifold P. In the sequel we study one special variant, fractional H-measures with orthogonality property, where the corresponding manifold and projection curves are orthogonal, as it was the case with classical or parabolic H-measures, and prove the localisation principle. Finally, we present a simple application of the localisation principle.
DOI
10.2298/FIL1716027E
WOS
WOS:000417970600001
Archivio
http://hdl.handle.net/20.500.11767/32613
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85040520828
Diritti
open access
Soggetti
  • H-measure

  • localisation principl...

  • fractional derivative...

Scopus© citazioni
4
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
5
Data di acquisizione
Mar 25, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback