Logo del repository
  1. Home
 
Opzioni

DOUBLING INEQUALITY AT THE BOUNDARY FOR THE KIRCHHOFF-LOVE PLATE'S EQUATION WITH DIRICHLET CONDITIONS

Morassi Antonino
•
Rosset Edi
•
Vessella Sergio
2020
  • journal article

Periodico
LE MATEMATICHE
Abstract
The main result of this paper is a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate's equation satisfying homogeneous Dirichlet conditions. This result, like the three sphere inequality with optimal exponent at the boundary proved in Alessandrini, Rosset, Vessella, Arch. Ration. Mech. Anal. (2019), implies the Strong Unique Continuation Property at the Boundary (SUCPB). Our approach is based on a suitable Carleman estimate, and involves an ad hoc reflection of the solution. We also give a simple application of our main result, by weakening the standard hypotheses ensuring uniqueness for the Cauchy problem for the plate equation.
DOI
10.4418/2020.75.1.2
WOS
WOS:000513820600002
Archivio
http://hdl.handle.net/11390/1195787
Diritti
open access
Soggetti
  • Isotropic elastic pla...

  • doubling inequalities...

  • unique continuation

  • Carleman estimates

Scopus© citazioni
2
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
4
Data di acquisizione
Mar 16, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback