Logo del repository
  1. Home
 
Opzioni

Independent acquisition of short insertions at the RIR1 site in the spike N-terminal domain of the SARS-CoV-2 BA.2 lineage

Greco, Samuele
•
Gerdol, Marco
2022
  • journal article

Periodico
TRANSBOUNDARY AND EMERGING DISEASES
Abstract
Although the major SARS-CoV-2 omicron lineages share over 30 non-synonymous substitutions in the spike glycoprotein, they show several unique mutations that were acquired after their ancestral split. One of the most intriguing mutations associated with BA.1 is the presence of the inserted tripeptide Glu-Pro-Glu within the N-terminal domain, at a site that had previously independently acquired short insertions in several other SARS-CoV-2 lineages. Although the functional implications of the small nucleotide sequences found at this insertion hotspot, named RIR1, are still unclear, we have previously hypothesized that they may play a compensatory role in counterbalancing minor fitness deficits associated with other co-occurring spike non-synonymous mutations. Here, we show that similar insertion events have independently occurred at RIR1 at least 20 times in early 2022 within the BA.2 lineage, being occasionally associated with significant community transmission. One of these omicron sublineages, characterized by a Ser-Gly-Arg insertion in position 212, has been responsible for over 4000 documented COVID-19 cases worldwide between January and July 2022, for the most part concentrated in Denmark, where it reached a national prevalence close to 4% (10% in the Nordjylland region) in mid-May. Although the concurrent spread of the BA.2.12.1, BA.4 and BA.5 lineages led to the rapid decline of this BA.2 sublineage, the independent acquisition of several other RIR1 insertions on a BA.2 genomic background suggests that these events may provide a slight fitness advantage. Therefore, they should be carefully monitored in the upcoming months in other emerging omicron-related lineages, including BA.5.
DOI
10.1111/tbed.14672
WOS
WOS:000837773500001
Archivio
https://hdl.handle.net/11368/3038260
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135765139
https://onlinelibrary.wiley.com/doi/10.1111/tbed.14672
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3038260/4/Transbounding Emerging Dis - 2022 - Greco - Independent acquisition of short insertions at the RIR1 site in the spike.pdf
Soggetti
  • indel

  • omicron

  • spike glycoprotein

  • viral evolution

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback