Logo del repository
  1. Home
 
Opzioni

Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material

Benetti D.
•
Jokar E.
•
Yu C. -H.
altro
Rosei F.
2019
  • journal article

Periodico
NANO ENERGY
Abstract
We report the effect of the integration of carbon dots (Cdots) in high-performance inverted planar-heterojunction (PHJ) perovskite solar cells (PSCs). We used Cdots to modify the hole-transport layer in planar PSC devices. By introducing Cdots on graphene oxide (GO) as hole-transporting layer, the efficiency of the PSC improved significantly from 14.7% in the case of bare GO to 16.2% of the best device with optimized Cdots content. When applying Cdots with an engineered absorption in the UV range as downshifting layer, the device performance was further improved, attaining a maximum PCE of 16.8% (+14%); the stability of the device was also enhanced of more than 20%. Kelvin probe force microscopy (KPFM) and cyclic voltammetry (CV) were employed to analyze the electronic band alignment at the interface between GO/Cdots and the perovskite film. Holes were extracted and transferred to the conductive substrate more efficiently in the presence of Cdots, thus delaying charge recombination. Photoluminescence (PL), transient PL decays and transient photovoltage (TPV) decays investigated the charge-transfer kinetics and proved the retardation of charge recombination. This work reveals an effective enhancement of the performance of planar PSCs by using Cdots/GO as hole transport material.
DOI
10.1016/j.nanoen.2019.05.084
WOS
WOS:000474636100084
Archivio
https://hdl.handle.net/11368/3046150
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85066995675
https://www.sciencedirect.com/science/article/pii/S2211285519304902
Diritti
open access
license:copyright editore
license:creative commons
license uri:iris.pri02
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3046150
Soggetti
  • Carbon dot

  • Charge transport laye...

  • Downshifting layer

  • Hole transport layer

  • Perovskite solar cell...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback