Logo del repository
  1. Home
 
Opzioni

Adsorption of chlorine on Ag(111): no subsurface Cl at low coverage

Gava, Paola
•
Kokalj, Anton
•
de Gironcoli, Stefano Maria
•
Baroni, Stefano
2008
  • journal article

Periodico
PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS
Abstract
The adsorption of molecular and atomic chlorine on perfect Ag(111) surface has been studied and characterized by means of extensive density-functional-theory calculations. For the molecular adsorption, we find that the dissociation of Cl(2) proceeds with an almost vanishing barrier. As for the adsorption of atomic Cl, on-surface, subsurface, and substitutional adsorptions are considered as a function of the coverage. At coverage lower than 1/2 ML, the on-surface adsorption displays the most exothermic chemisorption energies, whereas the mixed on-surface+subsurface and on-surface+substitutional adsorption modes become competitive with pure on-surface adsorption at about 1/2 ML of coverage and at higher coverages even preferred. The analysis of the adsorption free energy as a function of chlorine chemical potential reveals that the on-surface (root 3x root 3)R30 degrees adsorption phase is thermodynamically the most stable over a very broad range of Cl chemical potential. The mixed adsorption modes become thermodynamically more stable at high coverage for values of the Cl chemical potential that are substantially larger than those needed to form silver chloride. This finding seems to indicate that the formation of mixed adsorption phases, if they would ever occur, cannot be due to thermodynamic equilibrium but can only result from kinetic effects. We also find that the presence of open surface steps does not stabilize the subsurface Cl adsorption at low coverage. However due to the stronger Cl-surface interaction near steps, the mixed on-surface+subsurface adsorption on Ag(210) at high coverage becomes thermodynamically the most stable phase at Cl chemical potential close to that needed for the formation of bulk AgCl.
DOI
10.1103/PhysRevB.78.165419
WOS
WOS:000260574500108
Archivio
http://hdl.handle.net/20.500.11767/16265
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-55449129669
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.165419
Diritti
closed access
Soggetti
  • RAY PHOTOELECTRON-SPE...

  • Settore FIS/03 - Fisi...

Scopus© citazioni
30
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
36
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback