Logo del repository
  1. Home
 
Opzioni

Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and P l a n c k . II. Cross-correlation measurements and cosmological constraints

Chang, C.
•
Omori, Y.
•
Baxter, E. J.
altro
SPT Collaborations
2023
  • journal article

Periodico
PHYSICAL REVIEW D
Abstract
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of omega m 1/4 0.272 thorn 0.032 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi-0.052 and S8 equivalent to sigma 8 omega m=0.3 1/4 0.736 thorn 0.032 -0.028 (omega m 1/40.245 thorn 0.0-0.04426 and S8 1/40.734 thorn 0.035 -0.028 ) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find omega m 1/4 0.270 thorn 0.043 -0.061 and S8 1/4 0.740 thorn 0.034 -0.029 . Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck.
DOI
10.1103/PhysRevD.107.023530
WOS
WOS:000989220200002
Archivio
https://hdl.handle.net/11368/3056384
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85147527563
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.023530
Diritti
open access
license:copyright editore
license uri:iris.pri02
FVG url
https://arts.units.it/bitstream/11368/3056384/1/PhysRevD.107.023530.pdf
Soggetti
  • CMB, galaxie

  • cross-correlation

  • cosmology

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback