Logo del repository
  1. Home
 
Opzioni

Unusual corrections to scaling in entanglement entropy

Cardy J
•
Calabrese, Pasquale
2010
  • journal article

Periodico
JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT
Abstract
We present a general theory of the corrections to the asymptotic behaviour of the Renyi entropies S(A)((n)) = (1 - n)(-1) log Tr rho(n)(A) which measure the entanglement of an interval A of length l with the rest of an infinite one-dimensional system, in the case when this is described by a conformal field theory of central charge c. These can be due to bulk irrelevant operators of scaling dimension x > 2, in which case the leading corrections are of the expected form l(-2(x-2)) for values of n close to 1. However, for n > x/(x - 2) corrections of the form l(2-x-x/n) and l(-2x/n) arise and dominate the conventional terms. We also point out that the last type of corrections can also occur with x less than 2. They arise from relevant operators induced by the conical spacetime singularities necessary to describe the reduced density matrix. These agree with recent analytic and numerical results for quantum spin chains. We also compute the effect of marginally irrelevant bulk operators, which give a correction O((log l)(-2)), with a universal amplitude. We present analogous results for the case when the interval lies at the end of a semi-infinite system.
DOI
10.1088/1742-5468/2010/04/P04023
WOS
WOS:000277180700006
Archivio
http://hdl.handle.net/20.500.11767/13783
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77951786310
Diritti
metadata only access
Scopus© citazioni
123
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
106
Data di acquisizione
Mar 14, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback