Logo del repository
  1. Home
 
Opzioni

Estimating the galaxy two-point correlation function using a split random catalog

Keihanen E.
•
Kurki-Suonio H.
•
Lindholm V.
altro
Sanchez A. G.
2019
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positions and the expected galaxy density field. The expected field is commonly specified using a Monte-Carlo sampling of the volume covered by the survey and, to minimize additional sampling errors, this random catalog has to be much larger than the data catalog. Correlation function estimators compare data-data pair counts to data-random and random-random pair counts, where random-random pairs usually dominate the computational cost. Future redshift surveys will deliver spectroscopic catalogs of tens of millions of galaxies. Given the large number of random objects required to guarantee sub-percent accuracy, it is of paramount importance to improve the efficiency of the algorithm without degrading its precision. We show both analytically and numerically that splitting the random catalog into a number of subcatalogs of the same size as the data catalog when calculating random-random pairs and excluding pairs across different subcatalogs provides the optimal error at fixed computational cost. For a random catalog fifty times larger than the data catalog, this reduces the computation time by a factor of more than ten without affecting estimator variance or bias. © 2019 ESO.
DOI
10.1051/0004-6361/201935828
WOS
WOS:000515090700001
Archivio
http://hdl.handle.net/20.500.11767/104294
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85074571104
https://www.aanda.org/articles/aa/abs/2019/11/aa35828-19/aa35828-19.html
https://ui.adsabs.harvard.edu/abs/2019A&A...631A..73K/abstract
Diritti
open access
Soggetti
  • Cosmology: observatio...

  • Large-scale structure...

  • Methods: data analysi...

  • Methods: statistical

  • Settore FIS/05 - Astr...

Web of Science© citazioni
19
Data di acquisizione
Mar 26, 2024
Visualizzazioni
9
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback