Logo del repository
  1. Home
 
Opzioni

Biophysical and biomolecular analysis of EVs and their interaction with target cells

SENIGAGLIESI, BEATRICE
  • doctoral thesis

Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive breast cancer subtype and with a poor prognosis. Nowadays, chemotherapy is the main treatment in both early and advanced stage of the TNBC, but patients without complete response to conventional chemotherapy are approximately 80%. In light of that, clarifying biological mechanisms of the metastatic process is crucial in finding new therapeutic approaches for effective interventions. Metastasis is thought to be easier for more deformable and, therefore, soft cancer cells, which can migrate through narrow pores of extracellular matrix and vessels. Extracellular vesicles derived from triple-negative breast cancer, by sharing oncogenic molecules, have been shown to promote proliferation, drug resistance migration and metastatic capability in target cells proportional to properties of donor ones. Considering all these evidence, we wondered if small-EVs could also transfer information to target cells about biomechanical properties, a key step in metastasis, of the cell from which they originate. Our results showed that small-EVs derived from the MDA-MB-231 cell line (TNBC) can directly modulate biomechanical properties (stiffness/Young’s modulus), cytoskeleton, nuclear morphology and Yap activity of MCF7 cell line (Luminal A) as target cell. Therefore, in this study, we found out a new mechanism through which small-EVs derived from TNBC subtype could be able to contribute to progression and metastatic processes in breast cancer; this new knowledge could be used in diagnostic and therapeutic field.
Archivio
http://hdl.handle.net/11368/2988324
Diritti
open access
FVG url
https://arts.units.it/bitstream/11368/2988324/2/Reviewed_Nanotec_Ph.pdf
Soggetti
  • extracellular

  • vesicle

  • breast

  • cancer

  • biomechanics

  • biomechanics

  • Settore FIS/03 - Fisi...

Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback