Logo del repository
  1. Home
 
Opzioni

Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator

Feltrin, Guglielmo
•
Sovrano, Elisa
•
Zanolin, Fabio
2019
  • journal article

Periodico
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
Abstract
We study the periodic boundary value problem associated with the φ-Laplacian equation of the form (φ(u'))'+f(u)u'+g(t,u)=s, where s is a real parameter, f and g are continuous functions, and g is T-periodic in the variable t. The interest is in Ambrosetti–Prodi type alternatives which provide the existence of zero, one or two solutions depending on the choice of the parameter s. We investigate this problem for a broad family of nonlinearities, under non-uniform type conditions on g(t,u) as u→± ∞. We generalize, in a unified framework, various classical and recent results on parameter-dependent nonlinear equations.
DOI
10.1007/s00030-019-0585-3
WOS
WOS:000488976000001
Archivio
http://hdl.handle.net/11390/1168881
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85073072612
https://doi.org/10.1007/s00030-019-0585-3
Diritti
closed access
Soggetti
  • Ambrosetti–Prodi alte...

Scopus© citazioni
6
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
16
Data di acquisizione
Mar 16, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback