Logo del repository
  1. Home
 
Opzioni

Sigh: tool to determine the respiratory viscoelastic properties.

Antonaglia V
•
Peratoner A
•
De Simoni L
altro
Zin WA
2002
  • journal article

Periodico
JOURNAL OF CLINICAL MONITORING AND COMPUTING
Abstract
OBJECTIVE: In mechanically ventilated patients a high fraction of the pressure can be dissipated to overcome the viscoelastic components of the respiratory system. Recently it was demonstrated that sigh improved oxygenation in mechanically ventilated ARDS patients. We evaluated if, in acute lung injury (ALI) patients, the sigh can be used to measure the respiratory viscoelastic properties. METHODS: Ten consecutive normal subjects undergoing general anaesthesia for minor abdominal surgery and ten ALI patients admitted to the ICU, were studied. Three sighs were administered every minute during the measurement period. The viscoelastic constants (E2, R2 and tau2) were determined by (i) a series of end-inflation airway occlusions (multiple breath method, MBM) and (ii) fitting the time course of the slow decay in pressure during end inspiratory pause of the sigh (sigh method, SM). The results were compared by means of the limits of agreement as modified for small sample sizes. RESULTS: Viscoelastic parameters were similar to those obtained in other studies. In normal subjects the mean differences (+/- SEM) of tau2, R2, and E2 given by the SM and the MBM were 0 +/- 0.04 s, 0.37 +/- 0.20 cmH2O L(-1) s, and 0.21 +/- 0.26 cmH2O L(-1), respectively. The mean differences (+/- SEM) of tau2, R2, and E2 in ALI patients were 0.02 +/- 0.02 s, 0.45 +/- 0.31 cmH2O L(-1) s, 0.34 +/- 0.36 cmH2O L(-1), respectively. No lack of agreement could be detected between the two methods in all variables in normal subjects and ALI patients. CONCLUSIONS: The long inflation time characteristic of the sigh allowed the determination of the viscoelastic constants by means of a simpler and faster method. Moreover it does not require very small tidal volumes, which can increase reabsorption atelectasis in ALI patients and can improve alveolar recruitment and oxygenation in these patients.
DOI
10.1023/A:1026277004613
Archivio
http://hdl.handle.net/11368/2615846
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0344013550
Diritti
metadata only access
Soggetti
  • viscoelastic componen...

Scopus© citazioni
1
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback