Logo del repository
  1. Home
 
Opzioni

Reduction on characteristics for continuous solutions of a scalar balance law

Alberti G
•
Bianchini, Stefano
•
Caravenna L.
2014
  • conference object

Abstract
We consider continuous solutions u to the balance equation ∂t u(t, x) + ∂x [f (u(t, x))] = g(t, x) f ∈ C 2 (R), g ∈ L∞ (R) for a bounded source term g. Continuity improves to H ̈lder continuity o when f is uniformly convex, but it is not more regular in general. We discuss the reduction to ODEs on characteristics, mainly based on the joint works [5, 1]. We provide here local regularity results holding in the region where f (u)f (u) = 0 and only in the simpler case of autonomous sources g = g(x), but for solutions u(t, x) which may depend on time. This corresponds to a local regularity result, in that region, for the system of ODEs γ(t) = f (u(t, γ(t))) ̇ d u(t, γ(t)) = g(t, γ(t)). dt
WOS
WOS:000383745000037
Archivio
http://hdl.handle.net/20.500.11767/15766
http://people.sissa.it/~bianchin/Papers/Hyperbolic_Systems/proceeding_Padova.pdf
Diritti
open access
license:non specificato
Soggetti
  • Lagrangian formulatio...

  • Peano phenomenon

  • Method of characteris...

  • One-dimensional ODE

  • Heisenberg groups

  • Settore MAT/05 - Anal...

Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback