Logo del repository
  1. Home
 
Opzioni

Perazzo n-folds and the weak Lefschetz property

Emilia Mezzetti
•
Rosa M. Miró-Roig
2024
  • journal article

Periodico
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Abstract
In this paper, we determine the maximum h_max and the minimum h_min of the Hilbert vectors of Perazzo algebras A_F, where F is a Perazzo polynomial of degree d in n+m+1 variables. These algebras always fail the Strong Lefschetz Property. We determine the integers n, m, d such that h_max (resp. h_min) is unimodal, and we prove that A_F always fails the Weak Lefschetz Property if its Hilbert vector is maximum, while it satisfies the Weak Lefschetz Property if it is minimum, unimodal, and satisfies an additional mild condition. We determine the minimal free resolution of Perazzo algebras associated to Perazzo threefolds in P^4 with minimum Hilbert vectors. Finally we pose some open problems in this context.
DOI
10.1007/s12215-024-01063-x
WOS
WOS:001234180200001
Archivio
https://hdl.handle.net/11368/3099498
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85194538988
https://link.springer.com/epdf/10.1007/s12215-024-01063-x?sharing_token=zRwN4hDVvnPYIH1R-O0FLve4RwlQNchNByi7wbcMAY7hwjXSb020pStYbG7Zlnmml0t1lOsDLQi_8rL0a6lyN5ZZ-ZMBuqqHpTdzxdoD8rPuHjDywb4eqeQRZLP_k-Gt3taSX3560H92Ssd9VtTj86yKY_gzzqj5zSLYI3B8Rjo=
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3099498/1/Mezzetti_et_al-2024-Rendiconti_del_Circolo_Matematico_di_Palermo_Series_2.pdf
Soggetti
  • 13E10

  • 14J70

  • 14M05

  • Gorenstein algebra

  • Hilbert function

  • Lefschetz propertie

  • Minimal free resoluti...

  • Perazzo hypersurface

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback