Logo del repository
  1. Home
 
Opzioni

MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence

Reineke M.
•
Stoppa, Jacopo
•
Thorsten W.
2012
  • journal article

Periodico
GEOMETRY & TOPOLOGY
Abstract
Motivated by string-theoretic arguments Manschot, Pioline and Sen discovered a new remarkable formula for the Poincare polynomial of a smooth compact moduli space of stable quiver representations which effectively reduces to the abelian case (i.e. thin dimension vectors). We first prove a motivic generalization of this formula, valid for arbitrary quivers, dimension vectors and stabilities. In the case of complete bipartite quivers we use the refined GW/Kronecker correspondence between Euler characteristics of quiver moduli and Gromov-Witten invariants to identify the MPS formula for Euler characteristics with a standard degeneration formula in Gromov-Witten theory. Finally we combine the MPS formula with localization techniques, obtaining a new formula for quiver Euler characteristics as a sum over trees, and constructing many examples of explicit correspondences between quiver representations and tropical curves.
DOI
10.2140/gt.2012.16.2097
WOS
WOS:000321303500006
Archivio
http://hdl.handle.net/20.500.11767/17433
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84869234926
http://msp.org/gt/2012/16-4/p06.xhtml
Diritti
open access
Soggetti
  • Representation theory...

  • Gromov-Witten theory ...

  • 14T05

  • 16G20).

  • Settore MAT/03 - Geom...

Scopus© citazioni
10
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
9
Data di acquisizione
Mar 19, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback