Logo del repository
  1. Home
 
Opzioni

Overall Survival Prediction in Gliomas Using Region-Specific Radiomic Features

Shaheen A.
•
Burigat S.
•
Bagci U.
•
Mohy-ud-Din H.
2020
  • conference object

Abstract
In this paper, we explored predictive performance of region-specific radiomic models for overall survival classification task in BraTS 2019 dataset. We independently trained three radiomic models: single-region model which included radiomic features from whole tumor (WT) region only, 3-subregions model which included radiomic features from non-enhancing tumor (NET), enhancing tumor (ET), and edema (ED) subregions, and 6-subregions model which included features from the left and right cerebral cortex, the left and right cerebral white matter, and the left and right lateral ventricle subregions. A 3-subregions radiomics model relied on a physiology-based subdivision of WT for each subject. A 6-subregions radiomics model relied on an anatomy-based segmentation of tumor-affected regions for each subject which is obtained by a diffeomorphic registration with the Harvard-Oxford subcortical atlas. For each radiomics model, a subset of most predictive features was selected by ElasticNetCV and used to train a Random Forest classifier. Our results showed that a 6-subregions radiomics model outperformed the 3-subregions and WT radiomic models on the BraTS 2019 training and validation datasets. A 6-subregions radiomics model achieved a classification accuracy of 47.1% on the training dataset and a classification accuracy of 55.2% on the validation dataset. Among the single subregion models, Edema radiomics model and Left Lateral Ventricle radiomics model yielded the highest classification accuracy on the training and validation datasets.
DOI
10.1007/978-3-030-66843-3_25
Archivio
http://hdl.handle.net/11390/1205299
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85101562061
Diritti
metadata only access
Scopus© citazioni
1
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
1
Data di acquisizione
Mar 14, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback