Logo del repository
  1. Home
 
Opzioni

Dynamical Structure Factor of the J1−J2 Heisenberg Model on the Triangular Lattice: Magnons, Spinons, and Gauge Fields

Ferrari, Francesco
•
Becca, Federico
2019
  • journal article

Periodico
PHYSICAL REVIEW. X
Abstract
Understanding the nature of the excitation spectrum in quantum spin liquids is of fundamental importance, in particular for the experimental detection of candidate materials. However, current theoretical and numerical techniques have limited capabilities, especially in obtaining the dynamical structure factor, which gives a crucial characterization of the ultimate nature of the quantum state and may be directly assessed by inelastic neutron scattering. In this work, we investigate the low-energy properties of the S=1/2 Heisenberg model on the triangular lattice, including both nearest-neighborJ1 and next-nearest-neighbor J2 superexchanges, by a dynamical variational Monte Carlo approach that allows accurate results on spin models. For J2=0, our calculations are compatible with the existence of a well-defined magnon in the whole Brillouin zone, with gapless excitations at K points (i.e., at the corners of the Brillouin zone). The strong renormalization of the magnon branch (also including rotonlike minima around the M points, i.e., midpoints of the border zone) is described by our Gutzwiller-projected state, where Abrikosov fermions are subject to a nontrivial magnetic π flux threading half of the triangular plaquettes. When increasing the frustrating ratio J2/J1, we detect a progressive softening of the magnon branch at M, which eventually becomes gapless within the spin-liquid phase. This feature is captured by the band structure of the unprojected wave function (with two Dirac points for each spin component). In addition, we observe an intense signal at low energies around the K points, which cannot be understood within the unprojected picture and emerges only when the Gutzwiller projection is considered, suggesting the relevance of gauge fields for the low-energy physics of spin liquids.
DOI
10.1103/PhysRevX.9.031026
WOS
WOS:000480690700001
Archivio
http://hdl.handle.net/11368/2952301
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85074416221
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031026
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/2952301/1/PhysRevX.9.031026.pdf
Soggetti
  • numerical technique

  • spin liquids

Web of Science© citazioni
63
Data di acquisizione
Mar 25, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback