Logo del repository
  1. Home
 
Opzioni

A Multidisciplinary Approach to Evaluate the Effects of Contaminants of Emerging Concern on Natural Freshwater and Brackish Water Phytoplankton Communities

Pastorino, Paolo
•
Broccoli, Andrea
•
Bagolin, Elisa
altro
Renzi, Monia
2021
  • journal article

Periodico
BIOLOGY
Abstract
Ecotoxicological assays on monospecific phytoplankton have limited application for detecting the effects of environmental pollutants on multiple species communities. With this study, we took an ecotoxicological, ecological, and biochemical approach to evaluate the effects of two contaminants of emerging concern (zinc oxide nanoparticles, ZnO NPs, and potassium dichromate, K2Cr2O7) at different concentrations (K2Cr2O7 5.6–18–50 mg/L; ZnO NPs 10–100–300 mg/L) on natural freshwater and brackish water phytoplankton communities. Cell density and absorbance values decreased in freshwater and brackish water phytoplankton communities after exposure to ZnO NPs (100 mg/L and 300 mg/L only for freshwater), whereas growth rate was increased in both freshwater and brackish water phytoplankton communities after exposure to ZnO NPs 10 mg/L. Differently, there was no clear relationship between concentration and inhibition growth after exposure to K2Cr2O7: the lowest cell density was recorded after exposure to 18 mg/L. Moreover, the evenness index value was lower compared to the other concentrations, indicating the growth of a few, albeit resistant species to higher K2Cr2O7 concentrations. Generally, Bacillariophyceae and Dinoficee were prevalent in phytoplankton cultures after exposure to ZnO NPs and K2Cr2O7. The Shannon-Wiener index was slightly higher in the negative than the positive controls, but diversity was low after all treatments in both ecotoxicological assays. The evenness index was always very close to zero, indicating the numerical predominance of one or very few species. Finally, the decrease in chlorophyll-a and pheophytin-a in both ecotoxicological assays indicated a change in photosynthetic activity. Our findings provide evidence for alterations in natural phytoplankton after exposure to emerging contaminants that can disrupt an entire ecosystem’s integrity.
DOI
10.3390/biology10101039
WOS
WOS:000716047900001
Archivio
http://hdl.handle.net/11368/2996991
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85118126695
https://www.mdpi.com/2079-7737/10/10/1039
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2996991/1/biology-10-01039.pdf
Soggetti
  • Bacillariophyceae

  • Dinoficee

  • evenne

  • Shannon–Wiener

  • nanoparticle

  • ZnO

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback