Logo del repository
  1. Home
 
Opzioni

Simplified Lateral Torsional Buckling (LTB) Analysis of Glass Fins with Continuous Lateral Restraints at the Tensioned Edge

Bedon, Chiara
2021
  • journal article

Periodico
MATHEMATICAL PROBLEMS IN ENGINEERING
Abstract
Within multiple design challenges, the lateral torsional buckling (LTB) analysis and stability check of structural glass members is a well-known issue for design. Typical examples can be found not only in glass slabs with slender bracing members but also in facades and walls, where glass fins are used to brace the vertical panels against input pressures. Design loads such as wind suction give place to possible LTB of fins with LR at the tensioned edge and thus require dedicated tools. In the present investigation, the LTB analysis of structural glass fins that are intended to act as bracers for facade panels and restrained via continuous, flexible joints acting as lateral restraints (LRs) is addressed. Geometrically simplified but refined numerical models developed in Abaqus are used to perform a wide parametric study and validate the proposed analytical formulations. Special care is spent for the prediction of the elastic critical buckling moment with LRs, given that it represents the first fundamental parameter for buckling design. However, the LR stiffness and resistance on the one side and the geometrical/mechanical features of the LR glass members on the other side are mutually affected in the final LTB prediction. In the case of laminated glass (LG) members composed of two or more glass panels, moreover, further design challenges arise from the bonding level of the constituent layers. A simplified but rational analytical procedure is thus presented in this paper to support the development of a conservative and standardized LTB stability check for glass fins with LR at the tensioned edge.
DOI
10.1155/2021/6667373
WOS
WOS:000637366700004
Archivio
http://hdl.handle.net/11368/2989051
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85104398978
https://www.hindawi.com/journals/mpe/2021/6667373/
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2989051/1/6667373.pdf
Soggetti
  • laminated gla

  • lateral torsional buc...

  • lateral restraint

  • tensioned edge

  • simple mathematical m...

Web of Science© citazioni
0
Data di acquisizione
Mar 26, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback