Logo del repository
  1. Home
 
Opzioni

Existence for wave equations on domains with arbitrary growing cracks

Dal Maso, Gianni
•
Larsen, C. J.
2011
  • journal article

Periodico
ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI
Abstract
In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.
DOI
10.4171/RLM/606
WOS
WOS:000295823300008
Archivio
http://hdl.handle.net/20.500.11767/13513
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-80053378639
http://preprints.sissa.it/xmlui/handle/1963/4284
Diritti
closed access
Soggetti
  • Wave equation

  • dynamic fracture mech...

  • cracking domain

  • special functions wit...

  • Settore MAT/05 - Anal...

Scopus© citazioni
29
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
29
Data di acquisizione
Mar 11, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback