Logo del repository
  1. Home
 
Opzioni

Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures

Pampaloni, Niccolò P
•
Rago, Ilaria
•
Calaresu, Ivo
altro
Scaini, Denis
2020
  • journal article

Periodico
DEVELOPMENTAL NEUROBIOLOGY
Abstract
The increasing engineering of carbon-based nanomaterials as components of neuroregenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favor dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned entorhinal-hippocampal complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fiber sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering.
DOI
10.1002/dneu.22711
WOS
WOS:000478383100001
Archivio
https://hdl.handle.net/11368/3035880
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85070209590
https://onlinelibrary.wiley.com/doi/10.1002/dneu.22711
Diritti
open access
license:copyright editore
license:digital rights management non definito
license uri:iris.pri02
license uri:iris.pri00
FVG url
https://arts.units.it/request-item?handle=11368/3035880
Soggetti
  • hippocampu

  • injured brain

  • nanomaterial

  • neural interface

  • regeneration

  • synaptic enhancement

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback