Logo del repository
  1. Home
 
Opzioni

Decidability of the Logic of the Reflexive Sub-interval Relation over Finite Linear Orders

MONTANARI, Angelo
•
PRATT HARTMANN Ian
•
SALA Pietro
2010
  • conference object

Abstract
An interval temporal logic is a propositional, multimodal logic interpreted over interval structures of partial orders. The semantics of each modal operator are given in the standard way with respect to one of the natural accessibility relations defined on such interval structures. In this paper, we consider the modal operators based on the (reflexive) subinterval relation and the (reflexive) super-interval relation. We show that the satisfiability problems for the interval temporal logics featuring either or both of these modalities, interpreted over interval structures of finite linear orders, are all PSPACEcomplete. These results fill a gap in the known complexity results for interval temporal logics.
DOI
10.1109/TIME.2010.18
Archivio
http://hdl.handle.net/11390/882965
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-78649417386
Diritti
closed access
Soggetti
  • sub-interval relation...

  • interval temporal log...

  • complexity

Scopus© citazioni
18
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback