Logo del repository
  1. Home
 
Opzioni

GP-based Electricity Price Forecasting

BARTOLI, Alberto
•
DAVANZO, GIORGIO
•
DE LORENZO, ANDREA
•
MEDVET, Eric
2011
  • conference object

Abstract
The electric power market is increasingly relying on competitive mechanisms taking the form of day-ahead auctions, in which buyers and sellers submit their bids in terms of prices and quantities for each hour of the next day. Methods for electricity price forecasting suitable for these contexts are crucial to the success of any bidding strategy. Such methods have thus become very important in practice, due to the economic relevance of electric power auctions. In this work we propose a novel forecasting method based on Genetic Programming. Key feature of our proposal is the handling of outliers, i.e., regions of the input space rarely seen during the learning. Since a predictor generated with Genetic Programming can hardly provide acceptable performance in these regions, we use a classifier that attempts to determine whether the system is shifting toward a difficult-to-learn region. In those cases, we replace the prediction made by Genetic Programming by a constant value determined during learning and tailored to the specific subregion expected. We evaluate the performance of our proposal against a challenging baseline representative of the state-of-the-art. The baseline analyzes a real-world dataset by means of a number of different methods, each calibrated separately for each hour of the day and recalibrated every day on a progressively growing learning set. Our proposal exhibits smaller prediction error, even though we construct one single model, valid for each hour of the day and used unmodified across the entire testing set. We believe that our results are highly promising and may open a broad range of novel solutions.
DOI
10.1007/978-3-642-20407-4_4
WOS
WOS:000301802700004
Archivio
http://hdl.handle.net/11368/2307634
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79955765255
Diritti
metadata only access
Soggetti
  • genetic programming

  • time series forecasti...

  • electricity price

Scopus© citazioni
4
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback