Logo del repository
  1. Home
 
Opzioni

Interactions of cellulose cryogels and aerogels with water and oil: Structure-function relationships

Ciuffarin F.
•
Negrier M.
•
Plazzotta S.
altro
Manzocco L.
2023
  • journal article

Periodico
FOOD HYDROCOLLOIDS
Abstract
Food-grade porous materials, aerogels and so-called cryogels, were prepared from cellulose hydrogels obtained from solutions at increasing cellulose concentration (3, 4, 5%, w/w) by supercritical-CO2-drying (SCD) and freeze-drying (FD), respectively. The structure depended on the applied drying technique, with aerogels showing a denser network with pores <200 nm in diameter, a specific surface area of 370–380 m2g-1, and a porosity of 92–94%. Cryogels presented larger pores (2–5 μm diameter), much lower specific surface area (around 30 m2g-1), and higher porosity (95–96%). Water vapor adsorption by aerogels and cryogels was higher than that of neat microcrystalline cellulose. The absorption of water and oil was investigated as a function of time and at equilibrium. While water was almost immediately absorbed by both aerogels and cryogels, a much longer time was needed to reach oil absorption equilibrium. Moreover, aerogels required a longer absorption time than cryogels. Material morphology governed the kinetics of absorption; the absorption at equilibrium was directly dependent on material pore volume rather than on its morphology or material-fluid affinity. As a result, due to their lower pore volume, aerogels absorbed a lower amount of water or oil (4–8 gfluid/gdry matter) than cryogels (8–12 gfluid/gdry matter). All samples showed high fluid holding capacity (>96%). Water absorption caused a firmness decrease, but the firmness of oil-filled materials was the same as that of the unloaded ones. This study demonstrates that food-grade cellulose aerogels and cryogels can be structurally designed by varying cellulose concentration and drying techniques to obtain controlled food fluid loading.
DOI
10.1016/j.foodhyd.2023.108631
WOS
WOS:000951674600001
Archivio
https://hdl.handle.net/11390/1245324
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85150793332
https://ricerca.unityfvg.it/handle/11390/1245324
Diritti
metadata only access
Soggetti
  • Absorption

  • Adsorption

  • Loading

  • Microstructure

  • Porous materials

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback