Logo del repository
  1. Home
 
Opzioni

Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis

Porredon A.
•
Crocce M.
•
Fosalba P.
altro
Wilkinson R. D.
2021
  • journal article

Periodico
PHYSICAL REVIEW D
Abstract
We investigate potential gains in cosmological constraints from the combination of galaxy clustering and galaxy-galaxy lensing by optimizing the lens galaxy sample selection using information from Dark Energy Survey (DES) Year 3 data and assuming the DES Year 1 metacalibration sample for the sources. We explore easily reproducible selections based on magnitude cuts in i-band as a function of (photometric) redshift, zphot, and benchmark the potential gains against those using the well-established redMaGiC [E. Rozo et al., Mon. Not. R. Astron. Soc. 461, 1431 (2016)MNRAA40035-871110.1093/mnras/stw1281] sample. We focus on the balance between density and photometric redshift accuracy, while marginalizing over a realistic set of cosmological and systematic parameters. Our optimal selection, the MagLim sample, satisfies i<4zphot+18 and has ∼30% wider redshift distributions but ∼3.5 times more galaxies than redMaGiC. Assuming a wCDM model (i.e. with a free parameter for the dark energy equation of state) and equivalent scale cuts to mitigate nonlinear effects, this leads to 40% increase in the figure of merit for the pair combinations of ωm, w, and σ8, and gains of 16% in σ8, 10% in ωm, and 12% in w. Similarly, in ΛCDM, we find an improvement of 19% and 27% on σ8 and ωm, respectively. We also explore flux-limited samples with a flat magnitude cut finding that the optimal selection, i<22.2, has ∼7 times more galaxies and ∼20% wider redshift distributions compared to MagLim, but slightly worse constraints. We show that our results are robust with respect to the assumed galaxy bias and photometric redshift uncertainties with only moderate further gains from increased number of tomographic bins or the inclusion of bin cross-correlations, except in the case of the flux-limited sample, for which these gains are more significant.
DOI
10.1103/PhysRevD.103.043503
WOS
WOS:000613522500006
Archivio
http://hdl.handle.net/11368/2981280
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85101025095
Diritti
open access
license:copyright editore
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2981280
Soggetti
  • cosmology

  • large scale structure...

Scopus© citazioni
19
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
57
Data di acquisizione
Jan 18, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback