Logo del repository
  1. Home
 
Opzioni

An integral-representation result for continuum limits of discrete energies with multibody interactions

Braides A.
•
Kreutz L.
2018
  • journal article

Periodico
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Abstract
We prove a compactness and integral-representation theorem for families of lattice energies describing atomistic interactions defined on lattices with vanishing lattice spacing. The densities of these energies may depend on interactions between all points of the corresponding lattice contained in a reference set. We give conditions that ensure that the limit is an integral defined on a Sobolev space. A homogenization theorem is also proved. The result is applied to multibody interactions corresponding to discrete Jacobian determinants and to linearizations of Lennard-Jones energies with mixtures of convex and concave quadratic pair potentials.
DOI
10.1137/17M1121433
WOS
WOS:000431193200002
Archivio
https://hdl.handle.net/20.500.11767/139490
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85047296469
https://arxiv.org/abs/1703.01981
https://ricerca.unityfvg.it/handle/20.500.11767/139490
Diritti
metadata only access
Soggetti
  • Discrete-to-continuum...

  • Homogenization

  • Lattice energies

  • Lennard-Jones energie...

  • Multibody interaction...

  • Settore MAT/05 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback