Logo del repository
  1. Home
 
Opzioni

Turbine blade distortion after heat treatment: Preliminary experimental investigation and FEM analysis

De Bona F.
•
Lanzutti A.
•
Lucacci G.
altro
Srnec Novak J.
2020
  • conference object

Abstract
During the production process, turbine blades are subjected to a solubilization heat treatment, followed by tempering treatment, in order to obtain better mechanical properties. It is observed that, in some cases, permanent distortion can occur during the high temperature treatment (austenitising temperature). In this work, a high temperature creep resisting steel blade with a simplified geometry is considered. A finite element model is developed considering: the material properties depending on temperature, phase transformation and viscoplasticity (Nabarro-Herring and bilinear kinematic models). A nonlinear transient thermo-mechanical analysis is performed to simulate a standard thermal cycle. Material properties are partially calibrated based on dilatometric tests and partially from data available in literature. Adopting a laser scanner system, the blades geometry is measured before and after the heat treatment to calculate the permanent deflection. Comparing numerical results with experiments, it has been observed that the distortion phenomenon is mainly affected by the low-stress diffusional creep. This effect is due to the fact that, during the heat treatment, the blade is held at high temperature for a relatively long time according to a particular supporting lay-out. To minimize the permanent distortion, the numerical model permits an appropriate supporting system to be set-up, whose validity has been confirmed experimentally.
DOI
10.4028/www.scientific.net/KEM.827.98
Archivio
http://hdl.handle.net/11390/1177702
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85081092315
Diritti
metadata only access
Soggetti
  • Finite Element Method...

  • Heat treatment simula...

  • High temperature cree...

Scopus© citazioni
1
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback