Logo del repository
  1. Home
 
Opzioni

Structure and microrheology of genome organization: From experiments to physical modeling.

Andrea Papale
•
Angelo Rosa
2019
  • book part

Abstract
The mechanisms beyond chromosome folding within the nuclei of eukaryotic cells have fundamental implications in important processes like gene expression and regulation. Yet, they remain widely unknown. Unveiling the secrets of nuclear processes requires a cross-disciplinary approach combining experimental techniques to theoretical, mathematical and physical modeling. In this review, we discuss our current understanding of the generic aspects of genome organization during interphase in terms of the conceptual connection between the large-scale structure of chromosomes and the physics beyond the crumpled structure of entangled ring polymers in solution. Then, we employ this framework to discuss recent experimental and theoretical results for microrheology of Brownian nanoprobes dispersed in the nuclear medium.
Archivio
http://hdl.handle.net/20.500.11767/95594
https://www.taylorfrancis.com/books/e/9781315144009/chapters/10.1201/9781315144009-7
Diritti
open access
Soggetti
  • Settore FIS/03 - Fisi...

Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback