Logo del repository
  1. Home
 
Opzioni

Efficiency of Local Learning Rules in Threshold-Linear Associative Networks

Schönsberg, Francesca
•
Roudi, Yasser
•
Treves, Alessandro
2021
  • journal article

Periodico
PHYSICAL REVIEW LETTERS
Abstract
We derive the Gardner storage capacity for associative networks of threshold linear units, and show that with Hebbian learning they can operate closer to such Gardner bound than binary networks, and even surpass it. This is largely achieved through a sparsification of the retrieved patterns, which we analyze for theoretical and empirical distributions of activity. As reaching the optimal capacity via nonlocal learning rules like back propagation requires slow and neurally implausible training procedures, our results indicate that one-shot self-organized Hebbian learning can be just as efficient.
DOI
10.1103/PhysRevLett.126.018301
WOS
WOS:000605186100021
Archivio
http://hdl.handle.net/20.500.11767/117471
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85099128692
https://arxiv.org/abs/2007.12584
Diritti
closed access
Soggetti
  • Settore M-PSI/02 - Ps...

Scopus© citazioni
3
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
5
Data di acquisizione
Mar 16, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback